In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors.

نویسندگان

  • Alfredo G Fort
  • John W Murray
  • Nadine Dandachi
  • Michael W Davidson
  • Rolf Dermietzel
  • Allan W Wolkoff
  • David C Spray
چکیده

Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kif5B and Kifc1 Interact and Are Required for Motility and Fission of Early Endocytic Vesicles in Mouse Liver□V

Early endocytic vesicles loaded with Texas Red asialoorosomucoid were prepared from mouse liver. These vesicles bound to microtubules in vitro, and upon ATP addition, they moved bidirectionally, frequently undergoing fission into two daughter vesicles. There was no effect of vanadate (inhibitor of dynein) on motility, whereas 5 -adenylylimido-diphosphate (kinesin inhibitor) was highly inhibitor...

متن کامل

Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver.

Early endocytic vesicles loaded with Texas Red asialoorosomucoid were prepared from mouse liver. These vesicles bound to microtubules in vitro, and upon ATP addition, they moved bidirectionally, frequently undergoing fission into two daughter vesicles. There was no effect of vanadate (inhibitor of dynein) on motility, whereas 5'-adenylylimido-diphosphate (kinesin inhibitor) was highly inhibitor...

متن کامل

Mammalian Kinesin-3 Motors Are Dimeric In Vivo and Move by Processive Motility upon Release of Autoinhibition

Kinesin-3 motors drive the transport of synaptic vesicles and other membrane-bound organelles in neuronal cells. In the absence of cargo, kinesin motors are kept inactive to prevent motility and ATP hydrolysis. Current models state that the Kinesin-3 motor KIF1A is monomeric in the inactive state and that activation results from concentration-driven dimerization on the cargo membrane. To test t...

متن کامل

Association of kinesin with characterized membrane-bounded organelles.

The family of molecular motors known as kinesin has been implicated in the translocation of membrane-bounded organelles along microtubules, but relatively little is known about the interaction of kinesin with organelles. In order to understand these interactions, we have examined the association of kinesin with a variety of organelles. Kinesin was detected in purified organelle fractions, inclu...

متن کامل

Motor Coordination via a Tug-of-War Mechanism Drives Bidirectional Vesicle Transport

The microtubule motors kinesin and dynein function collectively to drive vesicular transport. High-resolution tracking of vesicle motility in the cell indicates that transport is often bidirectional, characterized by frequent directional changes. However, the mechanisms coordinating the collective activities of oppositely oriented motors bound to the same cargo are not well understood. To exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 26  شماره 

صفحات  -

تاریخ انتشار 2011